1. GENERALIDADES:
En Química, las propiedades se describen como cantidades que se pueden medir y expresar como productos de números y unidades.
Antes de analizar las diferentes magnitudes y unidades utilizadas en Química, es necesario conocer y diferenciar dos términos que son utilizados muy frecuentemente en esta asignatura y que vale la pena hacer una aclaración.
Materia se define como que tiene masa y ocupa un lugar en el espacio. MASA es la cantidad de materia de una muestra en particular de ella. La masa de un cuerpo es constante y no cambia, no importa el sitio donde se mida. El PESO de un cuerpo sin embargo, es la fuerza gravitacional de atracción entre la masa del cuerpo y la masa del planeta en el cual éste es pesado. Así, el peso de un cuerpo varía, dependiendo de donde es pesado, mientras que la masa no.
Desafortunadamente los términos MASA y PESO son utilizados en forma intercambiada; sin embargo, usted debe entender su diferencia.
2. MAGNITUDES FUNDAMENTALES:
Las magnitudes fundamentales más importantes utilizadas en Química son: longitud, masa, tiempo, cantidad de sustancia, temperatura y corriente eléctrica. Cada una de estas magnitudes tiene su propia unidad irreductible.
MAGNITUDES DERIVADAS:
Las magnitudes derivadas son magnitudes físicas obtenidas de combinaciones de las fundamentales. Por ejemplo, el volumen es una magnitud derivada.
3. UNIDADES:
a) SISTEMAS DE UNIDADES:
En Química, normalmente, se usan dos sistemas de unidades. El CGS (centímetro-gramosegundo),
cuya unidad básica de longitud es el centímetro (cm), de masa el gramo (g) y la del tiempo el segundo (s); y el SI (Sistema Internacional de Unidades), en donde la unidad básica de longitud es el metro (m), la masa el kilogramo (kg) y la del tiempo es el segundo (s). Ambos sistemas definen unidades básicas individuales para cada magnitud fundamental.
b) PREFIJOS DE LAS UNIDADES:
En ambos sistemas se usan prefijos para designar múltiplos decimales o fracciones
decimales de las unidades básicas. Los prefijos comunes son:
c) UNIDADES DERIVADAS:
Las magnitudes físicas derivadas se miden en unidades derivadas. Aunque las unidades que se usan para medir magnitudes físicas derivadas provienen realmente de las unidades básicas, a menudo se les dan nombres especiales para mayor conveniencia.
Por ejemplo, el VOLUMEN es una magnitud derivada, a la que se le asigna una unidad especial el LITRO, en el SI, el litro es igual a 1000 centímetros cúbicos (cm3).
La FUERZA y la ENERGIA son también magnitudes derivadas, la unidad derivada de la energía es el ERGIO (CGS) y el JOULE (SI). A continuación presentamos algunas unidades derivadas de fuerza y energía en los dos sistemas y la relación que hay entre ellas:

Las magnitudes físicas derivadas se miden en unidades derivadas. Aunque las unidades que se usan para medir magnitudes físicas derivadas provienen realmente de las unidades básicas, a menudo se les dan nombres especiales para mayor conveniencia.
Por ejemplo, el VOLUMEN es una magnitud derivada, a la que se le asigna una unidad especial el LITRO, en el SI, el litro es igual a 1000 centímetros cúbicos (cm3).
La FUERZA y la ENERGIA son también magnitudes derivadas, la unidad derivada de la energía es el ERGIO (CGS) y el JOULE (SI). A continuación presentamos algunas unidades derivadas de fuerza y energía en los dos sistemas y la relación que hay entre ellas:
d) CONVERSION DE UNIDADES:
Hay otras relaciones útiles entre CGS, SI y otras unidades que es importante conocer; algunas se pueden deducir por los prefijos y otras hay que aprenderlas de memoria o buscarlas en los libros, en la siguiente tabla se tienen estos factores de conversión:
La DENSIDAD de una sustancia se define como la masa de una sustancia que ocupa la
unidad de volumen:
En el Sistema Métrico Decimal, la densidad de los sólidos y líquidos se miden en g/cm3 o g/ml; y la de los gases en g/litro. En el sistema SI, la densidad se expresa como kg/m3.
Para la mayoría de las sustancias la densidad se mide a 20°C, la cual se considera como la temperatura ambiente. Para el agua sin embargo se expresa a 4°C, por ser la temperatura a la cual el agua tiene una densidad exacta de 1,00 g/ml.
La GRAVEDAD ESPECIFICA (peso específico) de una sustancia de la densidad relativa de una sustancia comparada con una estándar. En general para los líquidos se toma el agua a 4°C como el estándar y por lo tanto la gravedad específica expresa la densidad de una sustancia comparada con la del agua. Lo anterior se expresa así:
El peso específico también se puede calcular utilizando la siguiente ecuación:
La gravedad específica no tiene unidades, es simplemente la relación de dos densidades.
Para determinar la densidad de una sustancia a partir de la gravedad específica basta multiplicar la gravedad específica por la densidad del agua como sustancia de referencia.
Puesto que el agua tiene una densidad de 1,00 g/ml, la densidad y la gravedad específica son numéricamente iguales si se han utilizado las unidades g/ml.
Para determinar la densidad de una sustancia a partir de la gravedad específica basta multiplicar la gravedad específica por la densidad del agua como sustancia de referencia.
Puesto que el agua tiene una densidad de 1,00 g/ml, la densidad y la gravedad específica son numéricamente iguales si se han utilizado las unidades g/ml.
e) NOTACION CIENTIFICA:
La Notación Científica es un método para expresar números grandes o pequeños como factores de las potencias de 10.
Se pueden usar exponentes de 10 para hacer que la expresión de las mediciones científicas sea más compacta, más fácil de entender y más sencilla de manejar.
Para expresar números en notación científica, se utiliza la siguiente expresión:
Para expresar números en notación científica, se utiliza la siguiente expresión:
Donde, a es un número decimal entre 1 y 10 (sin ser igual a 10) y b es un entero positivo, negativo o cero. Por ejemplo:
f) CIFRAS SIGNIFICATIVAS:
La exactitud de una medición depende de la cantidad del instrumento de medición y del cuidado que se tenga al medir. Cuando se da una medida, se expresa con el número de CIFRAS SIGNIFICATIVAS que mejor represente su propia exactitud y la del instrumento empleado.
La exactitud en los cálculos químicos difiere de la exactitud matemática.
La exactitud de una medición depende de la cantidad del instrumento de medición y del cuidado que se tenga al medir. Cuando se da una medida, se expresa con el número de CIFRAS SIGNIFICATIVAS que mejor represente su propia exactitud y la del instrumento empleado.
La exactitud en los cálculos químicos difiere de la exactitud matemática.
g) APROXIMACION:
Las reglas para realizar aproximaciones son sencillas, si el dígito que sigue al último que se va a expresar es:
4 o menos, éste se descarta
5 o más, se aumenta en uno el último dígito
5 o más, se aumenta en uno el último dígito
PROBLEMAS RESUELTOS:
1. Una barra uniforme de acero tiene una longitud de 16 pulgadas y pesa 6,25 libras.
Determinar el peso de la barra en gramos por centímetro de longitud.
1. Una barra uniforme de acero tiene una longitud de 16 pulgadas y pesa 6,25 libras.
Determinar el peso de la barra en gramos por centímetro de longitud.
2. El peso específico de la fundición de Hierro es 7,20. Calcular su densidad: a) en gramos
por cm3, y b) en libras por pie3.
por cm3, y b) en libras por pie3.
Aplicamos la siguiente ecuación para realizar el cálculo correspondiente:
3. El ácido de baterías tiene un peso específico de 1,285 y contiene 38% en peso de
H2SO4. Cuántos gramos de H2SO4 contendrá un litro de ácido de batería.
H2SO4. Cuántos gramos de H2SO4 contendrá un litro de ácido de batería.
Determinamos la densidad de la solución, en base al peso específico: